Explain the Explain Plan: Access Methods

At the end of last year, I began a blog series on reading and interpreting Oracle execution plans. In this week’s post, I will tackle the aspect of execution plans that I get the most questions about, Access Methods.

What are Oracle Access Paths or Methods?

Access Methods or Access Paths are the techniques used by Oracle to access the data needed to answer a query. Access Methods can be divided into two categories; data accessed via a table scan or index access. You can find the individual Access Methods chosen by the Optimizer are visible in the Operations column of an Execution table.

How Many Access Paths are available to the Optimizer?

Oracle supports nine different Access Methods today, as shown in the image below.

When will the Optimizer choose each of these methods, and what can I do to influence that decision?

To clearly explain how each of the Access Methods works and when it will be chosen, I’ve created a short video.

What if I don’t get the Access Method I want?

If the Access Method you see in an execution plan is not what you expect, check the cardinality estimates for that object are correct, and the join order allows the access method you desire. Remember, Optimizer transformations (the rewriting of your query to open up additional access methods) can also greatly impact the Access Method.

Explain the Explain Plan: Cardinality Estimates

In last week’s post, I began a series on how to read and interpret Oracle execution plans by explaining what an execution plan is and how to generate one. This week I’m going to tackle the most important piece of information the Optimizer shares with you via the execution plan, it’s cardinality estimates.

What is a Cardinality Estimate?

A cardinality estimate is the estimated number of rows, the optimizer believes will be returned by a specific operation in the execution plan. The Optimizer determines the cardinality for each operation based on a complex set of formulas that use table and column level statistics as input (or the statistics derived by dynamic sampling). It’s considered the most important aspect of an execution plan because it strongly influences all of the other decisions the optimizer makes.

In part 4 of our series, I share some of the formulas used by the optimizer to estimate cardinalities, as well as showing you how to identify cardinalities in a plan. I also demonstrate multiple ways to determine if the cardinality estimates are accurate.

What can cause a Cardinality Misestimate and how do I fix it?

Several factors can lead to incorrect cardinality estimates even when the basic table and column statistics are up to date. In part 5 of our series, I explain the leading causes of cardinality misestimates and how you can address them.

Next weeks, instalment will be all about the different access methods available to the Optimizer and what you can do to encourage the optimizer to select the access method you want! Don’t forget more information on the Oracle Optimizer can always be found on the Optimizer blog.

Explaining the Explain Plan – How to Read and Interpret Execution Plans


Examining the different aspects of an execution plan, from cardinality estimates to parallel execution, and understanding what information you should glean from it can be overwhelming even for the most experienced DBA.

That’s why I’ve put together a series of short videos that will walk you through each aspect of the plan and explain what information you can find there and what to do if the plan isn’t what you were expecting.

What is an Execution Plan?

The series starts at the very beginning with a comprehensive overview of what an execution plan is and what information is displayed in each section. After all, you can’t learn to interpret what is happening in a plan, until you know what a plan actually is.

How to Generate an Execution Plan?

Although multiple different tools will display an Oracle Execution Plan for you, there really are only two ways to generate the plan. You can use the Explain Plan command, or you can view the execution plan of a SQL statement currently in the Cursor Cache using the dictionary view V$SQL_Plan. This session covers both techniques for you and provides insights into what additional information you can get the Optimizer to share with you when you generate a plan. It also explains why you don’t always get the same plan with each approach, as I discussed in an earlier post.

How to use DBMS_XPLAN to FORMAT an Execution Plan

The FORMAT parameter within the DBMS_XPLAN.DISPLAY_CURSOR function is the best tool to show you detailed information about a what’s happened in an execution plan including the bind variable values used, the actual number of rows returned by each step, and how much time was spent on each step.  I’ve also covered a lot of the content in this video in a previous post.

Part 2 of the series will cover Cardinality Estimates and what you can do to improve them!

Remember you can always get more information on the Oracle Optimizer on the Optimizer team’s blog.

How to read a Parallel Execution Plan in Oracle

The volume of data being stored in databases has grown exponentially in recent years. So too has the need to rapidly generate value or business insights from that data.

Parallel execution is the key to processing large volumes of diverse data quickly, as it subdivides complex tasks into a number of small tasks allowing multiple processes to accomplish a single complex task.

However, the use of parallelism can complicate the execution plan displayed. Oracle not only displays the operations needed to complete the SQL statement in the plan but all of the communication steps between the parallel server processes.

So, how should you go about interpreting a parallel execution plan?

In the video below, I give you a step by step guide on how to read parallel plans and what additional information you can glean from them!